bannerbanner
Воспоминания инженера-2. Уроки жизни
Воспоминания инженера-2. Уроки жизниполная версия

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
4 из 20

Здесь необходимо указать на важное достоинство ЦНВУ – наличие в его составе блока программирования координат радиолокационных ориентиров и промежуточных пунктов маршрута. Блок, представляющий набор 20-ти оборотных потенциометров, позволял непосредственно на борту самолёта перед вылетом запрограммировать координаты необходимого числа опознаваемых радиолокационных ориентиров и промежуточных пунктов



Центральное навигационное вычислительное устройство – ЦНВУ


маршрута, используя для установки значений координат собственные счётчики индикатора ЦНВУ. Это был первый случай применения устройства программирования в навигационно-вычислительных устройствах и было высоко оценено лётным составом ВВС.

Для проведения настройки и испытаний в заводских условиях и условиях эксплуа-тации была разработана специальная контрольно-проверочная аппаратура КПА-ЦНВУ. Как указывалось выше, ЦНВУ вошёл в штатное оборудование самолётов стратеги-ческого назначения: бомбардировщика-ракетоносителя ТУ-22К и дальнего разведчика-целеуказателя ТУ-95РЦ. Серийное производство ЦНВУ и КПА-ЦНВУ осуществлял приборостроительный завод «ТЭМП». Продолжительность серийного выпуска более 10 лет. В течение этого времени ЦНВУ подвергался многократной модернизации, связанной с улучшением его эксплуатационных и тактических и эргономических характеристик. По показателям надёжности ЦНВУ относился к числу наиболее надёжных изделий среди бортовых устройств аналогичной сложности.

В период разработки и изготовления опытных образцов ЦНВУ имело место много интересных событий, об одном их которых следует рассказать. Достопримечате-льностью большого кабинета Л. Л. Кербера с полукруглым окном была географическая карта мира почти на всю стену, подаренная ему командованием ВВС. Она дейст-вительно украшала кабинет. По всему периметру карты были широкие белые полосы. Однажды я случайно обратил внимание на большое количество каких-то надписей на карте, обрамлённых кружками различного цвета. Однако, не стал выяснять у хозяина кабинета, что значат эти надписи. После окончания очередного совещания Леонид Львович обратился ко мне с вопросом: «Когда ваше ОКБ поставит нам очередной опытный образец ЦНВУ?» Я назвал дату, которая совпадала с директивной. «Пожалуйста, Матвей Зельманович, вот вам ручка и напишите на краю карты эту дату и аккуратно распишитесь.» Теперь я понял, что означают эти надписи на карте. С его разрешения, углубился в чтение и увидел подписи многих весьма заслуженных и уважаемых людей, в том числе известных главных констструкторов. После этого, я спросил Леонида Львовича, а что значит цвет кружка, обрамляющего надписи. Он ответил: «Kрасным-взятое обязательство выполнено, не выполнено синим». «А какое наказание последует, если не выполнено?» – Он ответил: «Штраф – бутылка марочного коньяка». «А если выполнено?» «Коньяк с меня. Для этого, в моём сейфе всегда находится дежурная бутылка коньяка.» Прошло некоторое время и при очередной встрече в Москве Леонид Львович задал мне вопрос относительно поставки образца ЦНВУ, добавив, что ему кажется, что установленный срок истёк. Я ответил, что образец отправлен досрочно и находится на его складе. Позвонил в Ленинград и узнал номер накладной. Ему подтвердили, что образец находится на месте больше двух недель Он был крайне изумлён и одновременно обрадован; подошёл к карте и обвёл мою подпись красным. Затем открыл свой сейф и вручил мне бутылку коньяка. Она хранилась у меня дома до самого отъезда в Соединённые штаты Америки.

Следует заметить, что ОКБ-470 славилось в министерстве своей пунктуальностью. Возвращаясь к Леониду Львовичу, надо сказать, что помимо того, он был блестящим руководителем и специалистом, а также был замечательным психологом и тонким дипломатом. Предлагая разработчику самому определить срок поставки, он тем самым давал ему шанс не усугублять свою вину перед ОКБ А. Н. Туполева, ибо это сказывалось на сроки передачи самолётов заказчику для испытаний. Перспектива быть обведённым синим на видном месте и окончательно прослыть человеком, не выполняющим взятое личное обязательство, оказывало психологическое воздействие и в ряде случаях давало результат. Поэтому, я был далеко не единственным, чья подпись была обведена красным. Я преклонялся перед умом и мудростью Леонида Львовича, аристократом в полном смысле этого слова. Он был человеком, ищущим компромиссы, никого не обижал и категорически не подставлял под удар начальства.


В заключение этой Главы, необходимо отметить следующее:

1. ОКБ-470 являлось пионером в СССР по разработке многофункциональных аналоговых вычислителей и включения их в штатный состав военных и гражданских самолётов, с помощью которых осуществляется комплексирование бортового оборудования. Оно позволило автоматизировать процесс навигации, освободить экипаж от ручных вычислений, а также снизить физическую и психологическую нагрузку, сократить экипаж, расширить тактические возможности, повысить точность навигации и решение тактических задач. Все вычислители благодаря высоким эксплуатационным характеристикам, в том числе по надёжности, получили высокие оценки экипажей военных и гражданских самолётов. Вычислители были освоены серийно и выпускались для разных модификаций самолётов более 10 лет.


2. Достигнутый научный и практический опыт и прогресс в вычислительной технике, позволивший осуществить переход в последующем с аналоговых вычисли-телей на цифровые дали возможность существенно расширить функции бортовых комплексных систем. Это инициировало в дальнейшем проведение большого объёма научных исследований, направленных на поиск оптимальных решений, обеспечи-вающих самое эффективное использование комплексов при решении большого круга тактических задач.


3. Проведённые автором теоретические исследования в области комплексирования в том числе, связанных с обеспечением синхронизации прицельных меток и опуб-ликованных в научных трудах научно-исследовательских институтов МАП и военно-воздушных академий, привлекли внимание в соответствующих научных кругах. Они стали основой написания многочисленных научных работ, нескольких докторских диссертаций и ещё большего числа кандидатских, отличающихся незначительными, второстепенными нюансами.

В 1963г. произошло знаменательное событие: в результате присоединения к ОКБ ряда других аналогичных организаций, в частности серийных заводов, оно было преобразовано в Ленинградское Научно-Производственное Объединение «Электро-автоматика», которое возглавил П. А. Ефимов – Генеральный директор, Главный Конструктор.

Участники создания вычислителей для комплексных систем самолётов



Гарри Исаакович Пиль



Виктор Александрович Иванов



Белла Романовна Станиславская



Виктор Васильевич Резаков



Владимир Васильевич Гнюбкин



Виктор Николаевич Фадеев



Евдокия Петровна Тимофеева



Владимир Давидович Шейнберг

Глава четвёртая

Устройства отображения информации

(1965–1973)

В начале 1965 г. в Объединении наметилась тенденция роста числа разработок, относящихся к устройствам отображения информации. На разных стадиях разработки уже находился ряд типов картографических индикаторов (планшетов) и индикатор навигационно-тактической обстановки. Одновременно, в связи с ростом заинтересо-ванности самолётостроительных ОКБ и ведущих институтов МАП в разработке новых современных бортовых устройств отображения информации, руководство министерства определило ЛНПО «Электроавтоматика» в качестве разработчика некоторых видов этих устройств. С целью создания необходимой научно-технической базы для реализаций новых проектов в этой области руководитель объединения П. А. Ефимов принял решение об организации специальной лаборатории и отдельного конструкторского сектора в составе Научно-исследовательского отдела (НИО-1), которым руководил Е. С. Липин. Согласно приказу Начальником лаборатории (НИЛ-15) был назначен кандидат технических наук М. З. Львовский, начальником конструкторского сектора – И. Ф. Пухтенко. Здесь следует отметить важную роль в назначении меня начальником лаборатории Константина Гегамовича Арутюнова, инженер-полковника, руководителя военной приёмки нашего Объединения. Он меня довольно часто приглашал к себе для беседы, темой которой была состояние и развитие военной техники в мире. Он был умным человеком, и беседы с ним приносили мне лично удовольствие. Для меня назначение на должность начальника лаборатории было полной неожиданностью. Впоследствии я узнал о том, что у меня были конкуренты и более того, решительные противники моего назначения. Но К. Г. Арутюнов настоял на моей кандидатуре, и П. А. Ефимов принял это к сведению.

По мере поступления заказов на разработку новых устройств, в том числе ранее несвойственных профилю объединения, состав лаборатории и сектора пополнялся специалистами в области электроники, вычислительной техники, оптики и достиг к началу 1973 г. более 110 человек. В течение восьми лет существования этих подразделений до преобразования их в самостоятельный отдел, о чём более подробно будет сказано ниже, в ЛНПО были разработаны впервые в СССР новые устройства отображения информации, стоящие на уровне требований времени. К числу последних относятся индикатор навигационной обстановки ИНО-2, предназначенный для установки на тяжёлые самолёты различног назнаяения и индикатор на лобовое стекло ИПП-2–53 («Зрачок-2») для истребителя МИГ-23БК (МИГ-27), освоенных промышленностью. В процессе разработки перечисленных и других устройств, в том числе пультов управления для самолёта ТУ-144, объединение приобрело уникальный опыт, позволивший в дальнейшем перейти к созданию более сложных современных комплексных систем отображения информации для различных летательных аппаратов. Ниже приведена информация об отдельных устройствах отображения информации, созданных ЛНПО «Электроавтоматика» в период с 1965 г. по 1973 г.

Картографическиe проекционные индикаторы навигационной обстановки ПИНО

Разработка ПИНО производилась объединением в соответствии с общим планом строительства сверхзвукового пассажирского самолёта ТУ-144, штатное оборудование которого включало в свой состав этот индикатор. Аналогичный прибор фирмы CSF был включён в состав оборудования англо-французского самолёта «Concord». Разработка ПИНО ознаменовала собой совершенно новый этап развития бортовой индикаторной техники. ПИНО достаточно сложное, но значительно более информативное индика-торное устройство, чем автоматические планшеты. Принцип действия прибора основан на использовании микрофильма с большим объёмом картографического материала и проекционной оптической системы со специальным просветным экраном. Кроме того, в приборе предполагается наличие специального оптического устройства, позво-ляющего вращать изображение карты на экране на 360 градусов. Благодаря этому карту можно ориентировать как на «Север», так и по направлению полёта.

K началу разработки ПИНО объединение располагало ограниченной информацией об аналогичных разработках за рубежом. Было известно, что ряд фирм уже создали и испытали образцы проекционных индикаторов. Известно было также и то, что по технической реализации они существенно отличались друга от друга. Например, в ряде индикаторов использовался микрофильм на c плёнке шириной 35 мм, в то время как в других использовался набор микрокарт в виде фотослайдов. В одних индикаторах поворот изображения осущеслялся за счёт вращения кассеты с микрофильмом, в других–путём вращения специальной призмы (типа Дове или Пехана), введённой в проекционную оптическую систему. При выборе идеологии проектирования ПИНО были тщательно проанализированы все возможные варианты. В результате, оптима-льным был признан вариант, основанный на применении ленточного микрофильма и оптического элемента для поворота изображения. Разработка идикатора ПИНО прово-дилась в два этапа:

На первом этапе в соответствии с Техническим заданием ММЗ им. Туполева была разработана первая модификация индикатора – ПИНО. Заданные характеристики прибора отражали взгляды заказчика на особенности будущей эксплуатации сверхзвукового самолёта ТУ-144. Предполагалось, что самолёт ТУ-144 будет совершать полёты по строго ограниченному числу маршрутов. То есть, вид, содержание и запас картографического материала, размеры экрана, кратность увеличения, объём сопутст-вующей информации должны были соответствовать разработанной заказчиком методике использования ПИНО на самолёте ТУ-144. Как показали последующие всесторонние испытания, подобный подход существенно ограничил функциональные возможности индикатора, лишив его универсальности и, соответственно, перспективу его использование на других, вновь проектируемых самолётах.

На втором этапе в соответствии с новым техническим заданием, разработанным ЛНПО, которое учитывало предыдущий опыт, была разработана вторая модификация прибора – ИНО-2. Этот индикатор обладал многими преимуществами, главными из которых являлись: универсальность, существенное снижение массы и габаритов и, наконец, переход на использование стандартной перфорированной фотоплёнки для изготовления микрофильма. Для реализации принятой структуры и заданных характе-ристик прибора необходимо было разработать ряд новых компонентов и технологий. К их разработке были привлечены следующие специализированные научно-исследо-вательские институты:

Государственный институт прикладной оптики (ГИПО, г. Казань) – для разработки проекционной оптической системы;

Научно-исследовательский институт источников света НИИИС, г. Саранск)–для разработки малогабаритной галогенной лампы большой мощности и с большим сроком службы;

НИИ Химфотопроект–для разработки комплекта термостойкой цветной фотоплёнки с большим разрешением;

НИИ Картографии МО–для разработки технологии изготовления;

Мосфильм – для разработки технологии тиражирования микрофильмов.

Учитывая важность и актуальность разработки ПИНО и ИНО-2, П. А. Ефимов принял меры по укомплектованию НИЛ-15 специалистами различного профиля, выделению дополнительной площади, а также санкционировал приобретение специального оборудования для проведения широкого круга исследовательских работ. Поскольку перед НИЛ-15 стояла задача, связанная с разработкой устройств, включающих в свой состав проекционные и коллиматорные оптические системы, возникла необходимость в организации оптического участка для проведения оптических и светотехнических измерений. Заслуга в создании этого участка и приобретении необходимого и крайне дефицитного оборудования принадлежит опытному инженеру-оптику Алисе Александровне Царевской. В дальнейшем она принимала активное участие в формулировании требований к оптическим системам для вновь разраба-тываемых индикаторов. Другой её заслугой является обоснование выбора предприятий для разработок оптических систем. Он оказался безошибочным. Пройдут годы и оптическое направление деятельности ЛНПО возглавит талантливый специалист, кандидат технических наук Александр Исаакович Эфрос, сделавший уникальный и бесценный вклад в разработку и внедрение в производство самых совершенных, не имеющих аналогов, коллиматорных оптических систем и индикаторов на лобовое стекло.

Следует отметить, что П. А. Ефимов считал новое направление в деятельности Объе-динения, а именно – разработку устройств и систем отображения информации весьма важным и перспективным и положительно оценивал инициативы, относящиеся к этой тематике, о чём более подробно будет сказано ниже. Своим распоряжением он возложил научно-техническое руководство разработкой проекционных индикаторов и органи-зацию взаимоействия с разработчиками компонентов на автора, начальника НИЛ-15. Индикаторов типа ПИНО было изготовлено несколько образцов, два из которых были установлены соответственно на 1-м и 2-м самолётах ТУ-144. Разработка ПИНО имело большое значение, поскольку в процессе его проектирования, изготовления, доводки и испытаний были решены главные схемные и конструкторские вопросы, проверена оптимальность выбора проекционной оптической системы, надёжность работы источ-ника света в бортовых условиях и отработана технология изготовления и тиражирования микрофильмов на основе отечественных фотоматериалов. Полученные результаты были учтены при создании ИНО-2. Ниже приведена краткая информация о ПИНО и более подробная об ИНО-2.

Проекционный индикатор навигационной обстановки ПИНО

Индикатор ПИНО конструктивно был выполнен в виде двух блоков: блока индикации и блока управления и питания. Диаметр экрана-200мм, длина перфори-рованной цветной позитивной плёнки составляла 200мм, ширина 70мм. Проекционная система содержала два объектива, обеспечивающих увеличение в 10Х и 20Х, поворот изображения на экране-оптический на 360⁰. Микрофильм содержал одну или две маршрутные карты полёта (1:2.000.000, 1:1.000.000) и несколько крупномасштабных карт районов посадки (1:500.000, 1:250.000), уменьшенных соответственно в 10 и 20 раз. Перфорирование микрофильма производилась на специально сконструированном прецизионном станке, что гарантировало высокую точность управления микрофильмом, поскольку датчик обратной связи следящей системы был механически сцеплен с микрофильмом посредством перфорационных отверстий. Как уже указывалось, одним из важных компонентов ПИНО является проекционная оптическая система, содержащая в своём составе оптический элемент для поворота изображения карты на экране на угол 0360. К проекционной оптической системе были предъявлены следующие техниче-ские требования:

Обеспечение максимальной яркости изображения карты на экране с учётом допустимого светового и теплового воздействия на микрофильм;

Достижение наилучшего эффекта наблюдаемости изображения на экране с рабочих мест пилотов в условиях высокой внешней освещённости в кабине;

Минимальная дисторсия по экрану;

Минимальные ошибки при повороте изображения.

В процессе разработки оптической системы анализировались различные схемы, основанные на призмах Пехана, Дове, трёхкомпонентной призмы профессора М. М. Русинова. В результате поиска альтернативной схемы, отвечающей вышепе-речисленным требованиям, в ГИПО была разработана не имеющая аналогов оригинальная проекционная система (Авторы: Ю. Г. Кожевников, М. В. Дорофеева, М. З. Львовский, Б. Н. Бардин). Для достижения наилучших условий наблюдения формируемого на экране изображения с рабочих мест пилотов был разработан специальный просветный экран (Автор: Ю. Г. Кожевников). При разработке ПИНО были решены сложнейшие технические задачи, связанные с созданием высокоточных автоматических приводов, обеспечивающих продольное и поперечное перемещение микрофильма, механизмов вращения трафаретов, с нанесенными на них круговыми шкалами для отсчёта угловых параметров, механизма переключения объективов для изменения кратности увеличения, системы ручного управления картой с переменной скоростью для быстрой и точной её установки в исходное положение и др. Для обеспечения настройки, проверки и испытаний ПИНО в заводских и эксплуатационных условиях была разработана специальная контрольно-проверочная аппаратура. Для проведения наземных и лётных испытаний в составе оборудования самолёта ТУ-144, была изготовлена ограниченная партия опытных образцов ПИНО.



ПИНО на приборной доске ТУ-144




ИНО-2

Индикатор навигационной обстановки ИНО-2

Индикатор ИНО-2 воплотил в себя лучшие достижения конструкторской мысли. Свиде-тельством этому является сопоставление серийного образца ИНО-2 с аналогичным индикатором фирмы CSF (Франция). Сравнительные испытание индикаторов, проводившиеся в начале 80-х годов, показали, что ИНО-2 по основным тактико-техническим параметрам (объём представляемой информации, яркость и качество изображения, запас картографического материала и др.) превосходит индикатор фирмы CSF. ИНО-2 выполнен в виде моноблока с экраном 160мм. В индикаторе в качестве носителя картографической информации используется цветная позитивная 35мм перфорированная плёнка на лавсановой (более термостойкой) основе. Длина микрофильма не менее 12м, на котором можно разместить до 350 кадров с различным картографическим содержанием. Оптическое увеличение 20Х, поворот изображения-оптический на 360⁰ посредством модифицированной оптики, аналогичной ПИНО. Яркость карты, спроецированной на экран индикатора, достаточна для распознования и чтения самых мелких элементов её изображения с рабочих мест пилотов в условиях самой высокой солнечной освещённости в кабинах пассажирских и военно-транспортных самолётов и самолётов стратегической авиации. Габариты индикатора 250х220х420мм, масса 15кг.

На самом экране нанесены зачернённая двойная радиальная линия, условно совпадающая с продольной осью самолёта, и круг в центре, указывающий местонахождение самолёта на карте. Вращением оптической призмы осуществляется поворот изображения карты и ориентация её на «Север» или по направлению полёта. Кроме экрана имеются ещё три вращающихся трафарета, расположенные непосре-дственно за просветным экраном параллельно последнему. Это трафареты с изображением оцифрованной шкалы 0360, треугольного индекса и радиальной линией с делениями. Вращение этих трафаретов осуществляется по данным, посту-пающим от соответствующих измерителей угловых параметров. В результате, помимо отображения на карте текущего местонахождения самолёта в ИНО-2 индицируются: курс самолёта, путевой угол, угол сноса и азимут наземного радиомаяка. Осью отсчёта перечисленных угловых параметров является вертикальная ось индикатора. В качестве источника света в проекционной системе индикатора применена малогабаритная галогенная лампа мощностью 75 вт. Учитывая ограниченный срок службы лампы, в нём предусмотрено устройство револьверного типа с 4-мя лампами. Переключение ламп при выходе из строя одной из них, осуществляется вручную с помощью ручки, расположенной на лицевой панели индикатора. Для увеличения переднего обзора на карте (при ориентации карты по направлению полёта) в индикаторе ИНО-2 предусмотрена дополнительная оптическая система, состоящая из призмы и микроконденсора, расположенные вблизи лампы, волоконного жгута и проекционного микрообъектива. Эта система позволяет сформировать на экране ниже центра, на расстоянии, равном половине радиуса экрана, яркий маркер квадратной формы. При установке переключателя, расположенного на передней панели, в положение «Маркер» на экране пояляется изображение маркера, а карта автоматически смещается вниз на ту же величину–половину радиуса. Помимо указанных органов управления, на лицевой панели размещены: ручка регулировки яркости, счётчик номера карты (кадра), рукоятка с двумя степенями свободы аналогично той, которая применена в ЦНВУ. Последняя позволяет перевести следящие системы, управляющие микрофильмом, в режим перемотки и начальной установки микрофильма. При этом скорость и направление движения микрофильма (соответственно, карты на экране индикатора) зависит от направления и угла отклонения ручки от нейтрального положения. Это эксплуатационное удобство позволяет экипажу получить в полёте предваряющую картографическую информацию, а также проверить состояние микрофильма как при подготовке полёта, так и в полёте. Для обеспечения настройки, проверки и испытаний ИНО-2 в заводских условиях и условиях эксплуатации была разработана специальная контрольно-проверочная аппаратура КПА ИНО-2. Серийное изготовление ИНО-2 осуществлял завод «ТЭМП». Поставку серийных образцов оптической проекционной системы П-4 производил Казанский оптико-механический завод. Изготовление и поставку микрофильмов для ИНО-2 осуществляли соответствующие службы Гражданской авиации и Министерства Обороны. ИНО-2 установлен на пассажирском самолёте ИЛ-86, военно-транспортном самолёте АН-124 и на самолёте стратегического назначения ТУ-95М. В заключении следует особо отметить Ф. Д. Жаржавского, ведущего конструктора ИНО-2, создавшего кострукторский шедевр, который спустя годы вызывает восхищение своим изяществом и технологичностью. Высокой оценки заслуживает ведущий инженер ИНО-2 Б. М. Шендерович.

На страницу:
4 из 20